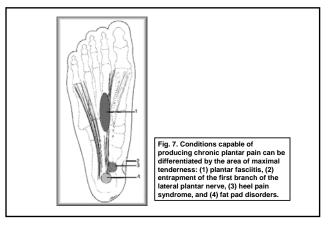
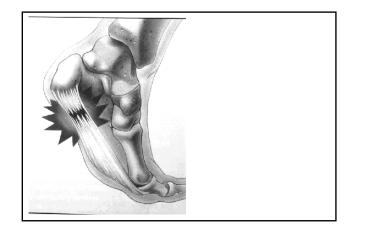
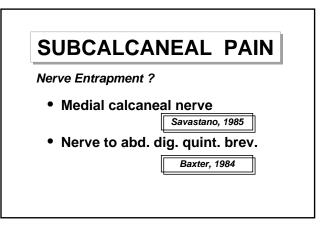
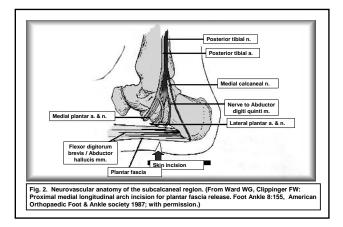


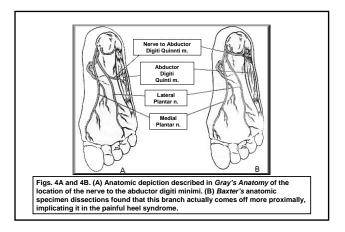

Adjunct Associate Clinical Professor-Department of Applied Biomechanics California School of Podiatric Medicine at Samuel Merritt College Private Practice: Seal Beach Podiatry Group, Inc.

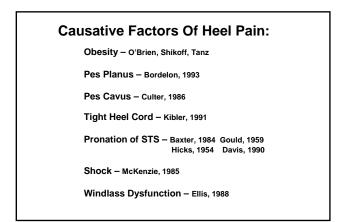

Private Practice: Seal Beach Podiatry Group, Inc. 550 Pacific Coast Highway Suite 209 Seal Beach, California 90740 USA 562-493-2451 DRichieJr@aol.com Lecture Handout Courtesy Of:

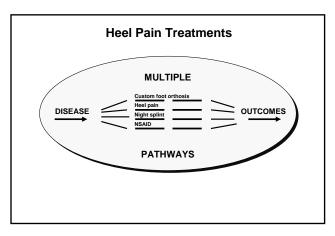

Allied OSI Orthotic Lab

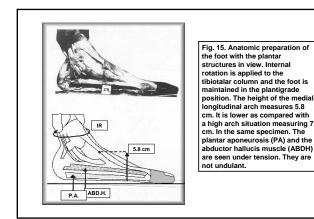


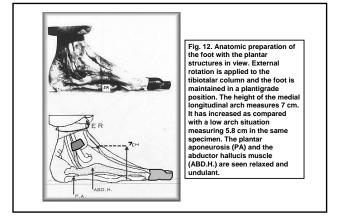



Ę	D	emc	graphic	s
<u>Autho</u> Wolgin (1		<u>Male</u> 42	Female 58	Mean Age 48
Tisdel (19	96)	10	22	43
Pfeffer (19	999)	76	160	48
Martin (19	98)	94	62	45
Davis (19	94)	31	74	48
Mizel (199	16)	20	37	54
Gill (1996))	165	246	47
	TOTAL	438 40%	659 60%	333 (47.5 YRS)








Pathogenesis

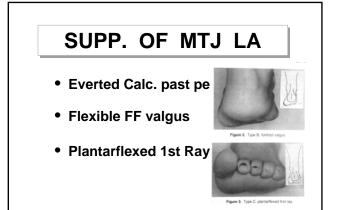
"It is reasonably certain that a condition which has so many different theories of etiology and treatment does not have valid proof of any one cause."

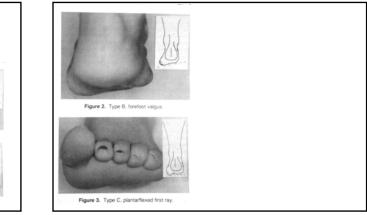
Snook and Chrisman Clin Orthop 82:163, 1972

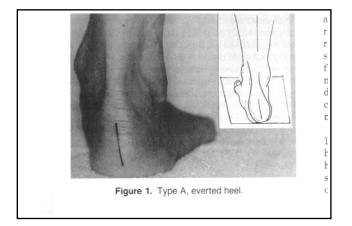
Points of Confusion schanics of Plantar scia overload: xot Pronation TJ Pronation TJ Pronation Longitudinal axis Oblique axis * Ray movement rch Flattening

PLANTAR FASCIITIS

Pronation of Subtalar Joint :

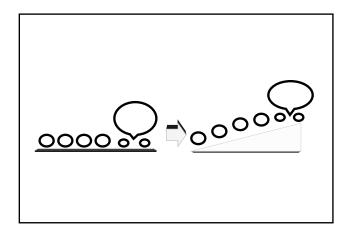

- Cannot by itself cause strain of PF
- Can only influence PF
 thru MTJ

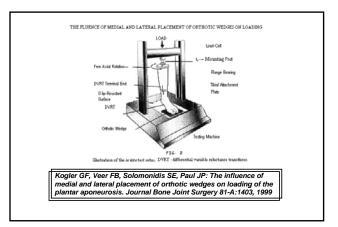

Scherer PR, The Biomechanics Graduate Research Group for 1988: Heel Spur Syndrome. Pathomechanics and non surgical treatment. Journal American Med Assoc 81:68, 1991.

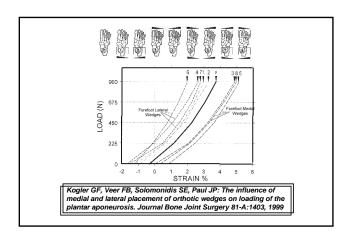

- 73 Patients, 118 painful heels
- · Treatments: NSAIDS, Steroid injection, Tape strapping, Foot Orthoses
- 81% in group with tape strapping and orthoses achieved good results
- · 80% of all patients had foot deformity compensated by supination of longitudinal axis of midtarsal joint

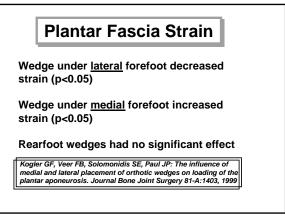
Scherer PR, The Biomechanics Graduate Research Group for 1988: Heel Spur Syndrome. Pathomechanics and non surgical treatment. Journal American Med Assoc 81:68, 1991.

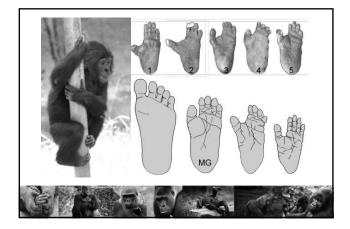
- 80% of all patients had foot deformity compensated by supination of longitudinal axis of midtarsal joint
 - Out of 133 painful heels: 63 had forefoot valgus 33 had everted rearfoot 20 had plantarflexed first ray

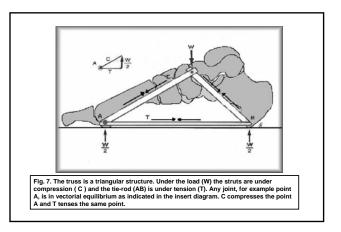


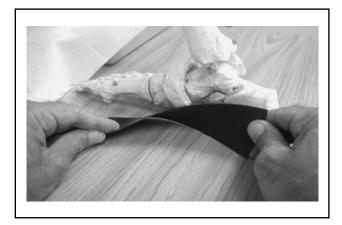


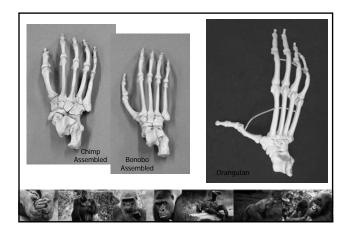


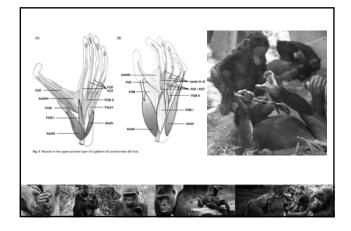


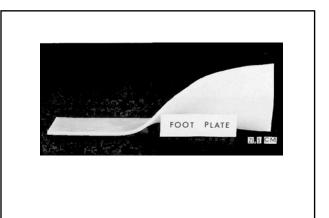

medial and lateral placement of orthotic wedges on loading of the plantar aponeurosis. Journal Bone Joint Surgery 81-A:1403, 1999

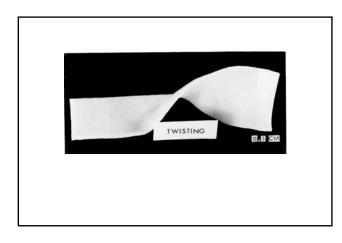






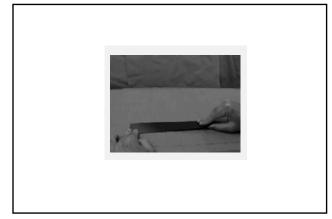


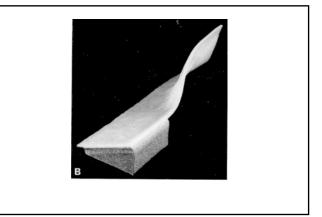


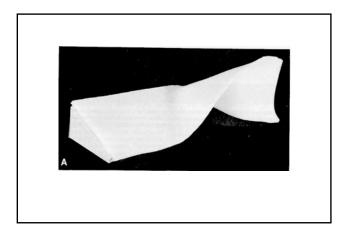


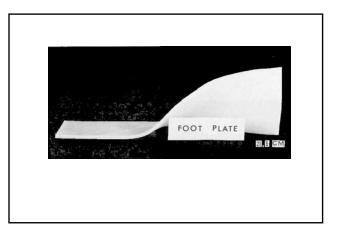
Twisted Plate Theory

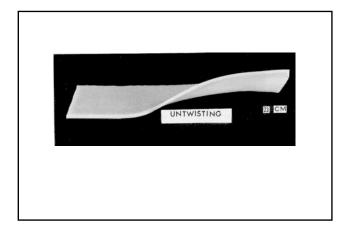
RAISE ARCH:	Invert Rear Plate Evert Front Plate
LOWER ARCH:	Evert Rear Plate Invert Front Plate

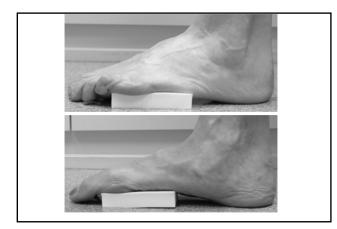


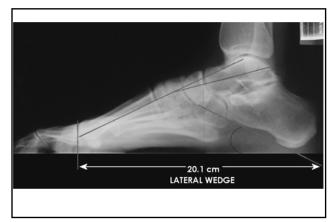


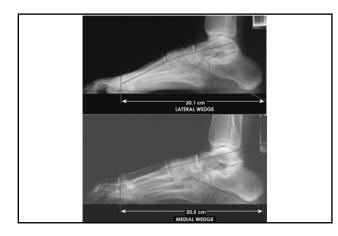

Twisted	Plate Theory
RAISE ARCH:	Invert Rear Plate Evert Front Plate
LOWER ARCH:	Evert Rear Plate Invert Front Plate

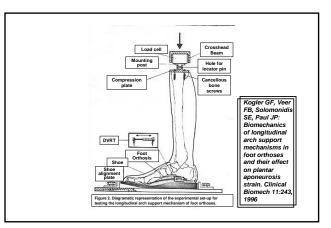


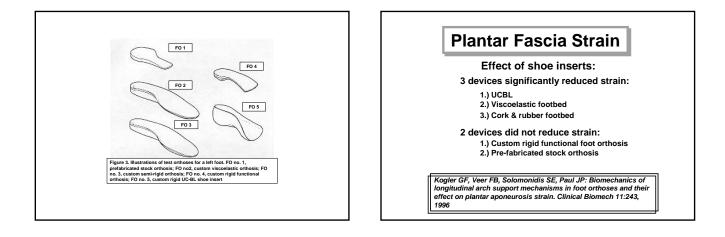


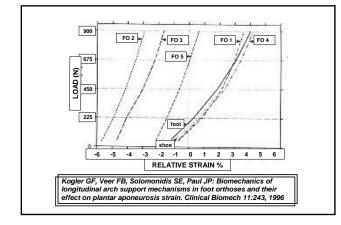


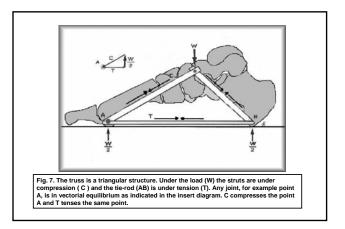


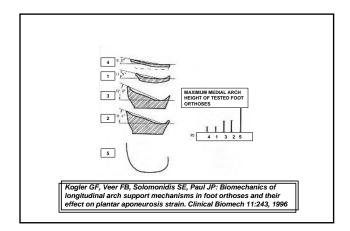






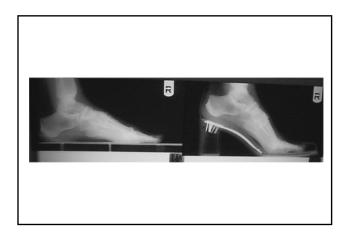


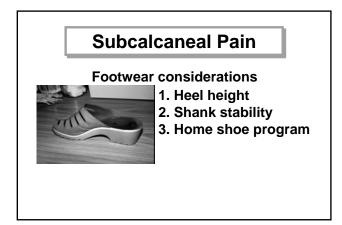


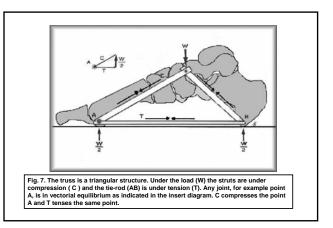


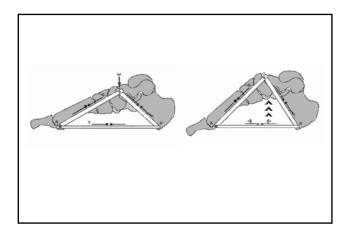
"One of the distinguishing features of the orthoses which decreased plantar aponeurosis strain was the surface contours of their medial and central regions and the angles related to their arch shape were more acute."

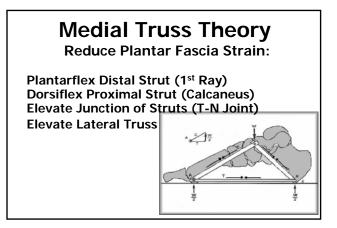
Kogler GF, Veer FB, Solomonidis SE, Paul JP: Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clinical Biomech 11:243, 1996

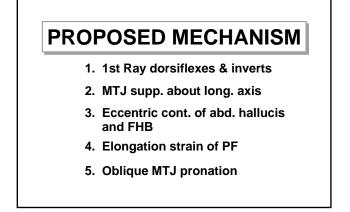


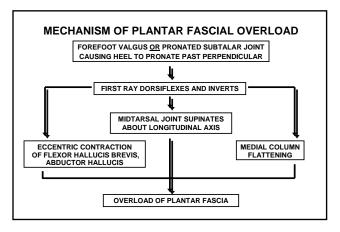


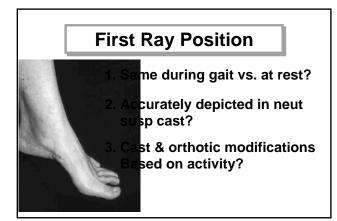

Elevate Heel? 12 cadaver limbs, static stance Strain transducer in central band PF 2 load levels: 337 N, 450N Heel Heights 2.0, 4.0, 6.0 cm Blocks: No significant difference in f. strain Shank contour platforms: sig. becrease in p.f. Strain with elevation in f. strain Shank contour platforms: sig. becrease in p.f. Strain with elevation in the levation with elevation on strain with the plantar apneurosis: In Vitro Study." Foot and Ankle 22:433-439, 2001.

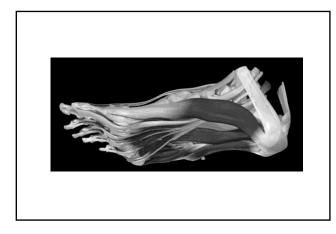

Foot types with a "normal" arch do not have any medial tarsal bone contact with the shank profile interface. Therefore, structural repositioning of the foot most likely occurs from lateral skeletal segments that touch the shank profile surface. This suggests that an extended support zone, from just under the calcaneus to the cuboid, decreases the medial truss-like action of the foot by permitting the metatarsals to plantarflex slightly.


Kogler G.F., Veer F.B., Verhulst S.J., et. al. "The effect of heel elevation on strain within the plantar apneurosis: In Vitro Study." Foot and Ankle 22:433-439, 2001.









Dynamic Gait

In terminal stance:

- Foot inverts
- 1st ray plantar flexes below 2-5
 - Due to: Peroneus longus Plantar intrinsics Windlass

Plantar Intrinsics

- No activity until 40% of gait cycle
- In pronated feet, activity at 10%
- Principal active role in arch stability
- No activity in standing feet

Mann and Inman, JBJS, 1964

RELAXED STANCE

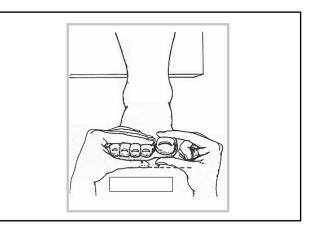
- 1. Extrinsic foot muscles inactive
- 2. Arch integrity maintained solely by plantar fascia

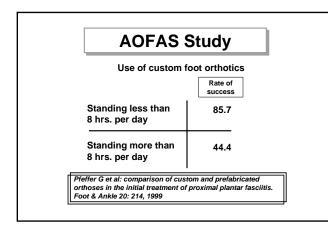
Basmajian, 1963 Huang, 1993 Reeser, 1983

First Ray Position

Static stance

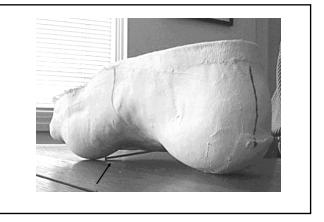
ſ

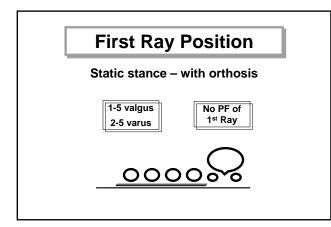

Plantar intrinsics and peroneus longus inactive

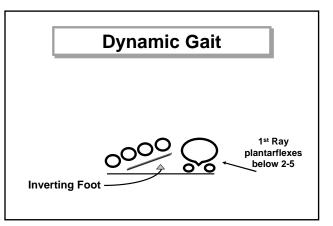

Position

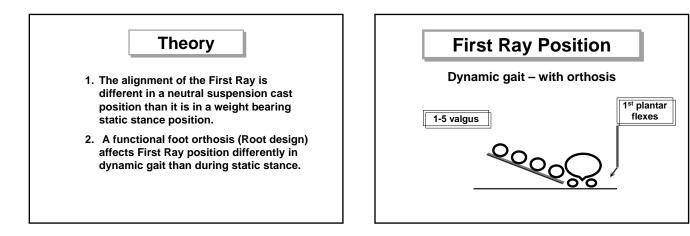
 1^{st} ray dorsiflexed to <u>at least</u> level of 2^{nd} Met or to end ROM

- No windlass
- No plantar intrinsics
- No peroneus longus


"Certain forms of treatment for the foot originated from the basis of thinking that only considers the foot as a static structure. Accommodative appliances and arch supports are typical examples of methods of treatment based upon static considerations. Such methods are relatively ineffective in comparison with methods designed to control function of the foot during kinetic stance."


Root, ML, Orien, WP, Weed, JH: Clinical Biomechanics: Normal and Abnormal Function of the Foot, Vol 2. Los Angeles, Clinical Biomechanics Corp, 1977.


"Static stance stability of the foot is of minor clinical significance. In most feet that function abnormally during kinetic conditions, the static stance periods are probably not very traumatic to the foot. Therefore, static stance can be considered to be clinically insignificant except in feet that are severely subluxed and pronated."


"Most symptomatology and trauma to the foot is occasioned by instability of the foot that primarily develops during kinetic function. Therefore, the foot should be clinically evaluated and treatment consideration should be based primarily upon kinetic requirements of the foot. Treatment based upon static considerations has usually failed to provide more than partial relief of symptoms and that relief may be only temporary."

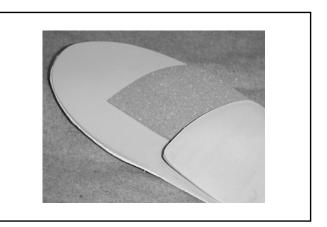
Root, ML, Orien, WP, Weed, JH: Clinical Biomechanics: Normal and Abnormal Function of the Foot, Vol 2. Los Angeles, Clinical Biomechanics Corp. 1977.

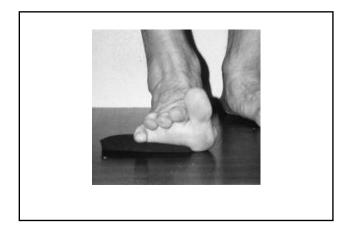
First Ray Overload

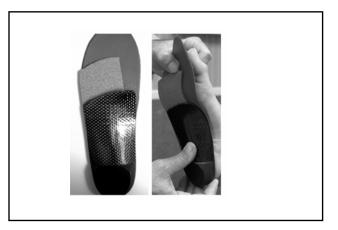
- Orthosis too wide
- Supinated cast "false FF Varus"
- FF Varus post with no true FF Varus
- 2-5 varus with filler

Plantar Heel Pain

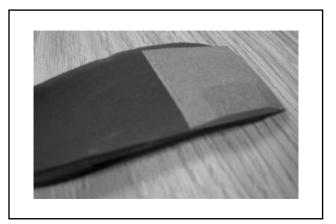
Orthotic Treatment Proposal


Goal: Prevent dorsiflexion overload of First Ray


Strategy: Assure that the first metatarsal remains plantar to the plane of the lesser metatarsals during static stance and during gait

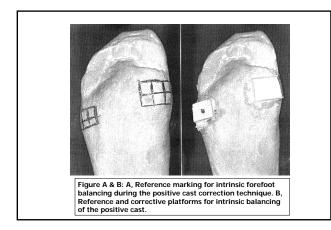

Plantarflex First Ray ORTHOTIC STRATEGIES

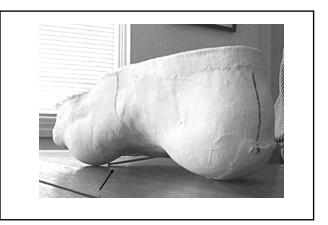
- 1. Push down on 1st during Casting
- 2. Reverse Mortons Extension or **External FF Valgus Wedge**
- 3. Lite Filler between platforms
- 4. First Ray Cut Out

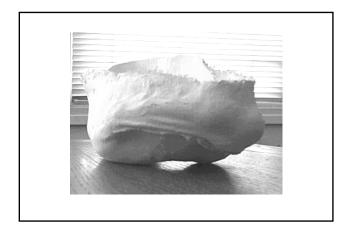




Maximal Plantar Flexion Of First Ray

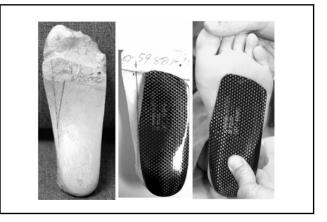

 Push down on First Ray During Casting Procedure

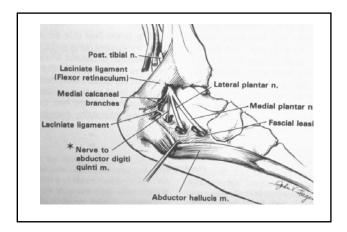


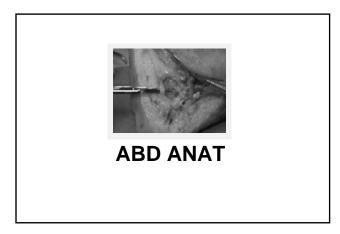


Maximal Plantar Flexion Of First Ray

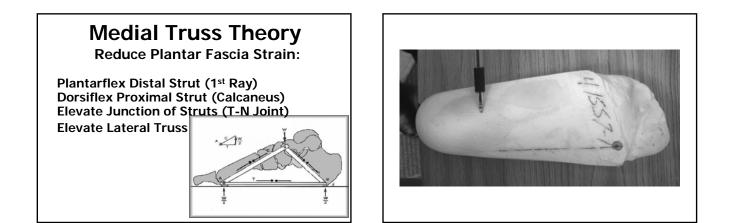
- Push down on First Ray During
 Casting Procedure
- Light Filler Between Balancing
 Platforms

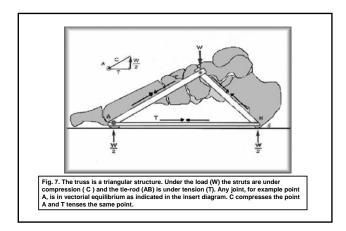


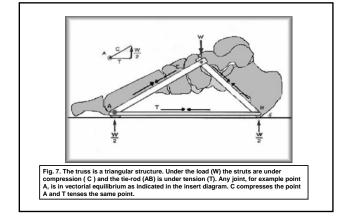



First Ray Cutout

Vs


First Met Accomodation



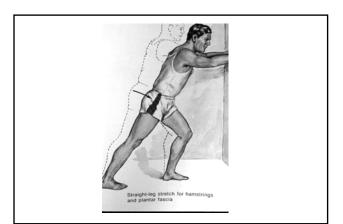


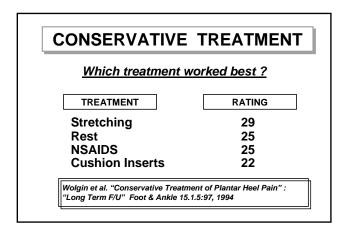
Dorsiflex Calcaneus

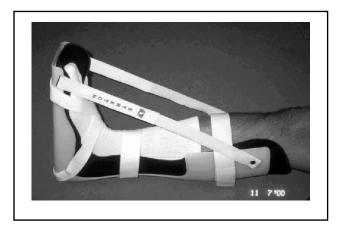
(Increase Calcaneal Pitch)

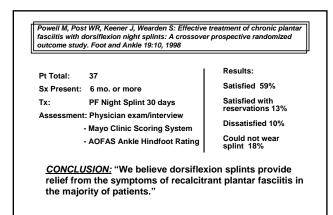
- 1. Decrease Load on Achilles
 - ✓ Stretching
 - ✓ Night Splint
 - ✓ Heel Lift

2. Contoured heel seat of FO

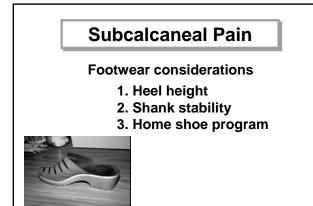


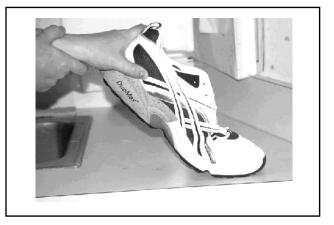


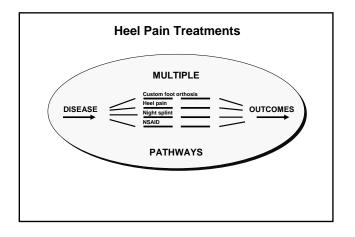

Treatment recommendations

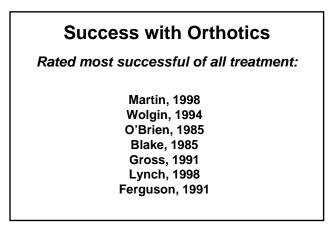

3. Decrease passive loading of heel cord:

- Heel elevation (footwear)
- Static stretching
- Night splint






	al: 32		
Sx present	: 12.7 montl	ns	
Tx:	2 Groups		
Assessme	(cust	om fabricated	scia night splint)
Results:	Group	Healed	Time to Healing
	Control	6/17	8.8 weeks
	Control		
	TNS	16/16	12.5 weeks



Sx present: not reported Tx: Tape Strapping, NSAID, Steroid Inj. Rigid foot orthosis Assessment: Patient evaluation of % of pain relief Results: Subgroup of strapping & orthosis only. Good 81% Fair 15% in 6 weeks Fair 15% in 6 streets	Patient to	tal: 73, 118 pa	inful heels		
Rigid foot orthosis Assessment: Patient evaluation of % of pain relief Results: Subgroup of strapping & orthosis only. Good 81%	Sx preser	t: not report	ed		
Assessment: Patient evaluation of % of pain relief Results: Subgroup of strapping & orthosis only. Good 81%	Tx:	Tape Strap	Tape Strapping, NSAID, Steroid Inj.		
Results: Subgroup of strapping & orthosis only. Good 81%		Rigid foot	orthosis		
Good 81%	Assessm	ent: Patient ev	aluation of % of pain relief		
	Results:	Subgroup of st	trapping & orthosis only.		
Fair 15% in 6 weeks		Good 81%			
			eks		
Poor 4%		Poor 4%			
3 of 133 painful heels had • 33 had everted heel					
3 of 133 painful heels had • 33 had everted heel prefoot valgus		arflexed first	(Thus, 80% had supp. long axis of MPJ)		

Scherer PR, The Biomechanics Graduate Research Group for 1988: Heel Spur Syndrome. Pathomechanics and non surgical treatment. Journal American Med Assoc 81:68, 1991.

Conclusion: "This study demonstrates that with or without initial short term antiinflammatory medication, mechanical control of the midtarsal joint is an effective treatment for heel spur syndrome."

Lynch D, Goforth WP, Martin JE, Odom RD, Preece CK, Kotler MW: Conservative treatment of plantar fascilits – A prospective study. Journal American Pod Med Assoc. 88: 375, 1998

Patient total: 85 Sx present: 46 weeks Tx: 3 Categories

1. NSAID & Steroid Inj. 2. Viscoelastic heel cup 3. Low dye strapping / arch pad functional foot orthosis

Assessment: Patient self-completed questionnaire, Physician evaluation, visualizing pain scale: 2,4,6 & 12 weeks

Results:				
Starting visual analog pa	ain = 6.4			
Finish (all 3 groups) 12 v	veeks = 2	.0		
68% improvement				
Treatment failure:	Final Pa	in/activ	ity acc	essment:
(no improvement or	Group	G	F	P
adverse reaction)	1	20	13	67
2.3% in Group 1	2	10	20	70
42% in Group 2	3	40	30	30
4% in Group 3				

Failure at 6 week	S	Good-Excellent Results at 12 weeks
Anti-inflammatory	23%	<u>at 12 weeks</u> 33%
Accommodative	42%	30%
Mechanical	4%	70%

Author	Duration of	Oute	come	(%)
<u></u>	Treatment (mos)	<u>G</u>	E	<u>P</u> 3
Wolgin	5.7	82	15	3
Tisdel	12	28	61	14
Martin	12	51	33	14
Davis	5.1	58	31	11
Mizel	16	59	18	22
Scherer	1.2	82	28	8
Lynch	3	12	7	8

Ideal Subcalcaneal Pain Treatment Outcome

Absence of morning pain	Yes	No
Absence of day/night pain	4	
Full work capacity	v	
Return to previous recreation	4	
Return to previous fitness	1	
No unacceptable footwear restrictions	4	
Restoration of strength – flexibility	4	
Return to pre-injury mobility	4	

Plantar Fasciitis: Custom vs. Pre-fab Foot Orthoses

RCT involving 135 participants

Random assignment into three groups:

- Prefabricated orthosis (firm foam)
- □ Custom orthosis (semi-rigid plastic)

Duration of follow-up for each patient: 12 months

Landorf KB, Keenan AM, Herbert RD: Effectiveness of foot orthoses to treat plantar fasciitis. Arch Intern Med/ Vol 166, June 26th, 2006 pp. 1305-1310.

Plantar Fasciitis: Custom vs. Pre-fab Foot Orthoses Results:

Compared with sham orthoses:

JMean pain score with pre-fab orthoses was 8.7 points better (P=.05)
 JMean pain score with custom orthoses was 7.4 points better (P=.10)

→Mean pain score with custom orthoses was 7.4 points better (P=.10)

Mean function score was 7.5 points better for custom orthoses (P=.04)

There were no differences between groups at the 12 month review.

Landorf KB, Keenan AM, Herbert RD: Effectiveness of foot orthoses to treat plantar fascilitis. Arch Intern Med/ Vol 166, June 26th, 2006 pp. 1305-1310.

Why was the pain score not significantly different between the 3 groups?

- 1. Patients have low expectation of achieving total permanent relief.
- 2. Acceptable time frame to achieve successful tx outcome?
- 3. Definition of success: Pain, patient satisfaction
- 4. Treatments deemed successful, yet: Significant # of pts still in pain Significant # of pts fail to comply & improve Significant length of time to achieve success
- 5. Multiple tx's yet "Which worked best?"
- 6. Physician assessment of success
- 7. Retrospective reviews

good wound care

Martin RL, Irrgang JJ, and Conti SF: Outcome Study of Subjects
with Insertional Plantar Fasciitis. Foot & Ankle Int. 19:803, 1998.Duration of Sx:
30% > 12 mos.
54% > 6 mos.Less likely to have good
outcome if symptoms
present for > 12 mo.
before treatment.
P < .05</td>

Martin RL, Irrgang JJ, Conti SF: Outcome study of subjects with insertional plantar fasciitis. Foot and Ankle 19:803, 1998.

CONCLUSION:

2. "This may add support to the observation that subjects with more chronic symptoms have a poorer outcome and that initiation of early, aggressive, non surgical therapy is appropriate and warranted."

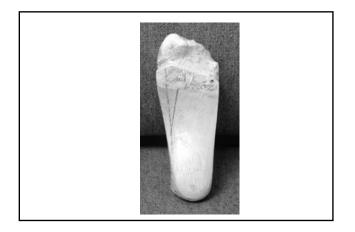
Subcalcaneal Pain

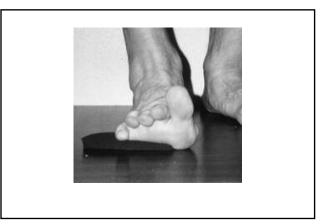
Subjects with symptoms less than 12 months have the best outcome with non surgical treatment

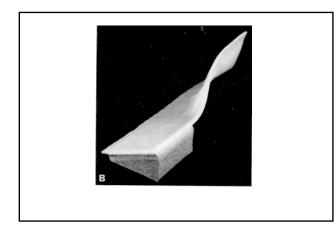
> Furrey, 1975 O'Brien, 1985 Shikoff, 1986

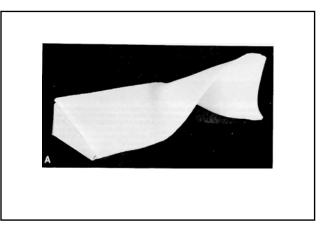
Arnis, 1988 Wolgin, 1994 Mizel, 1996 Martin, 1998

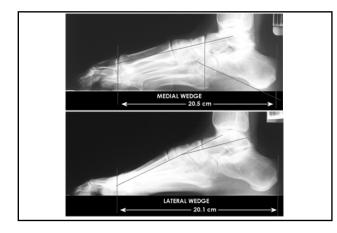
What is a quality outcome? Heel Pain = What is the overall cost?


Ideal Subcalcaneal Pain Treatment Outcome

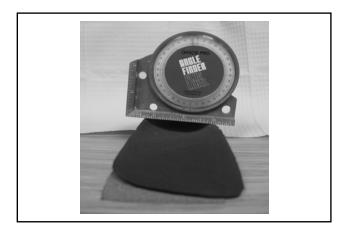

Absence of morning pain	Yes	No
Absence of day/night pain	A	
Full work capacity	4	
Return to previous recreation	v	
Return to previous fitness	v	
No unacceptable footwear restrictions	V	
Restoration of strength – flexibility	.	
Return to pre-injury mobility	4	

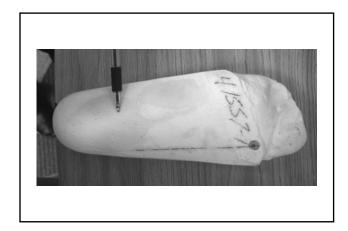


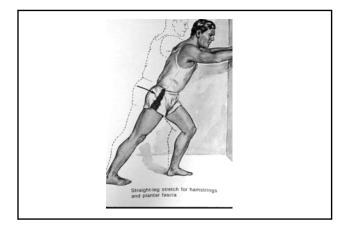


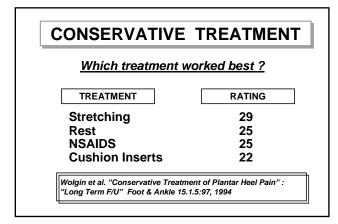

Raise Medial Arch at T-N Joint

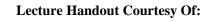
- 1. Twist the plate Evert FF Lateral FF wedge
- 2. Plaster expansion at T-N not a filler
- 3. Wider footplate at T-N narrower at 1st Ray







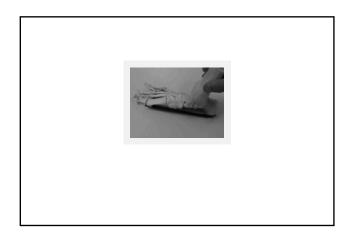


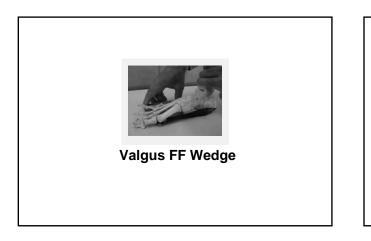


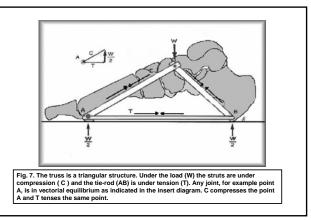
Subcalcaneal Pain

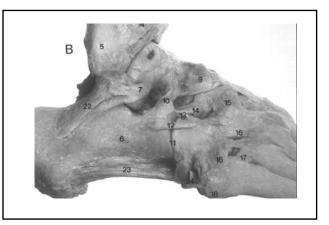
Treatment recommendations

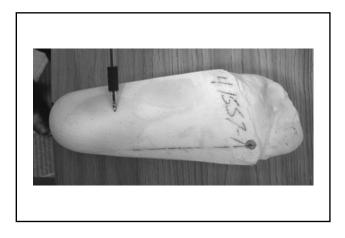
4. Footwear program:

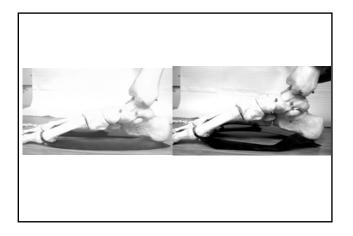

- Elevated heel
- Shank stability
- Home shoe use


Allied OSI Orthotic Lab

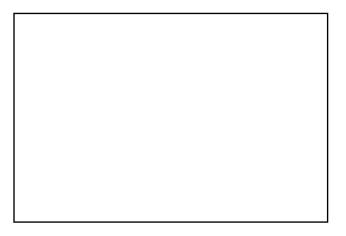






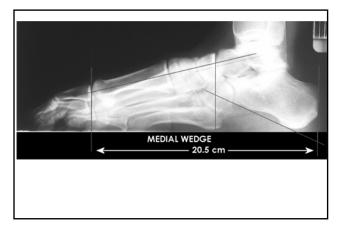

Raise Lateral Truss


- 1. FF Valgus Post
- 2. Minimal Plaster Fill at CC joint
- 3. Contoured Shank Footwear

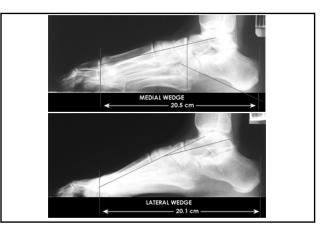


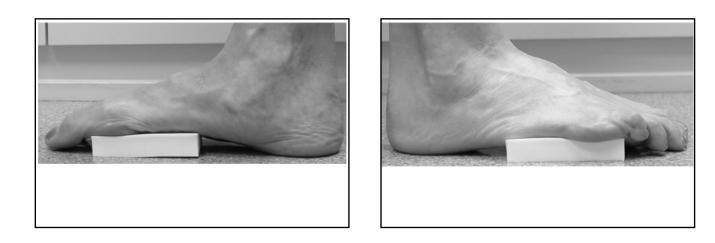
Subcalcaneal Pain

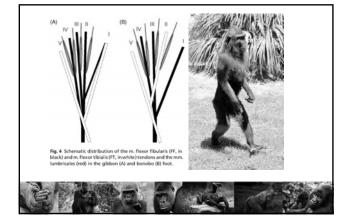
Treatment recommendations

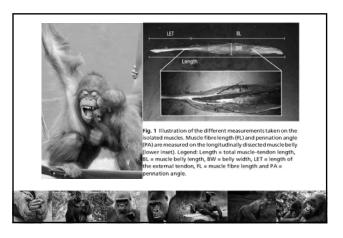

- 1. Prevent overload (dorsiflexion) of first ray:
 - Light filler between platforms
 - Balance 2-5, 1st ray cut out
 - Avoid wide orthotic plate
 - Don't capture a false FF varus

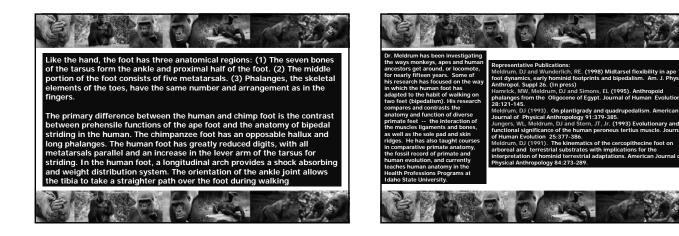
Subcalcaneal Pain

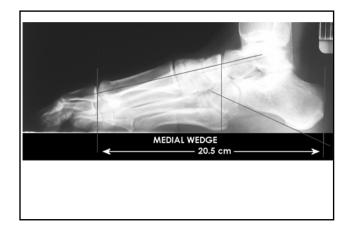

Treatment recommendations

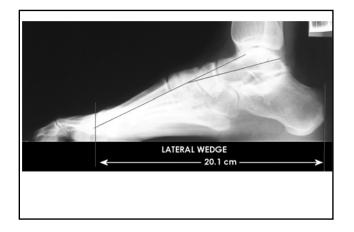

- 2. Minimize supination of longitudinal Axis of MTJ:
 - Prevent rearfoot eversion
 - If present, capture FF valgus

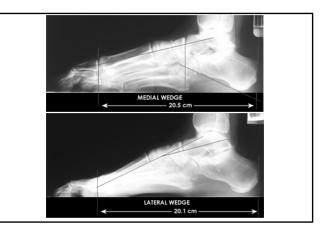


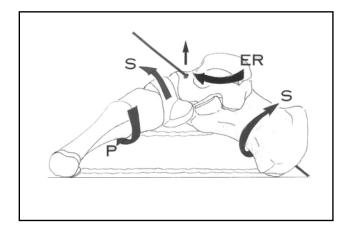


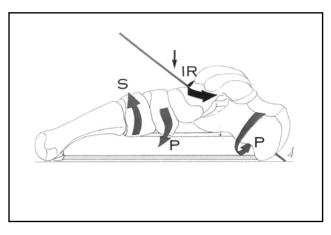


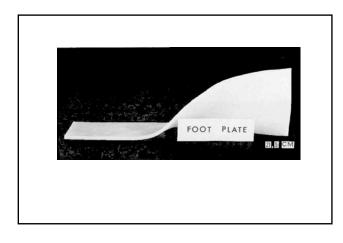


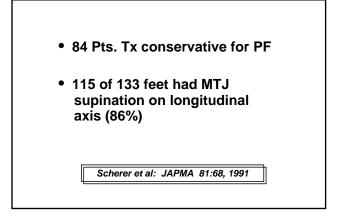












Twisted	Plate Theory
RAISE ARCH:	Invert Rear Plate Evert Front Plate
LOWER ARCH:	Evert Rear Plate Invert Front Plate

Med Assoc 81:68			surgical treatment. Journal American	
Patient to	otal:	73, 118 pa	inful heels	
Sx prese	nt: I	not reporte	ed	
Tx: 1		Tape Strapping, NSAID, Steroid Inj.		
			orthosis	
Assessm	ent: I	Patient eva	aluation of % of pain relief	
Results: Subgroup of st Good 81% Fair 15% in 6 wee			rapping & orthosis only.	
			he.	
	Poor 4		KS	
63 of 133 pai	nful he	eels had	• 33 had everted heel	
forefoot valg				
20 had plant		d Cast	(Thus, 80% had supp. long axis of MPJ)	

